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Abstract--In this article the discrete transfer method developed by Lockwood and Shah for calculating 
radiative heat transfer is examined. Various aspects of the algorithm are analysed and modifications 
suggested to improve the accuracy and computational performance. These modifications are evaluated by 
comparing predicted heat fluxes with analytic and numerically accurate solutions to test problems and 
measured jluxes from experiments. The evaluation study shows that the modifications yield significant 

improvements over the original algorithm. 

. 

‘I. INTRODUCTION 

There are many applications where the accurate mod- 
elling of radiative heat transfer combined with other 
modes of heat transfer and fluid flow is important. One 
example of an application where thermal radiation is 
a dominant mode of heat transfer is the hazard analy- 
sis of fires in enclosures, in particular the prediction 
of flashover [l] and flame spread. Another application 
where there is a requirement to predict the radiative 
heat distribution is the safety analysis of flaring and 
venting operations. One final example of an appli- 
cation where the accurate modelling of radiation is 
beneficial is in the design of burners and furnaces 
where a primary objective is the minimisation of 
oxides of nitrogen (NO,) emission, as NO, production 
is highly sensitive to changes in the temperature field 

PI. 
The modelling of thermal radiation together with 

the solution of the fluid dynamic equations [3] necess- 
ary to predict the fluid flow and heat transfer for 
a combusting system is a formidable task. In some 
scenarios the influence of radiative heat transfer on the 
fluid motion is small, with only small perturbations to 
the density field occurring. In this situation radiative 
heat transfer in the gas phase can be modelled using 
relatively crude models, see for example [4], or 
where the laminar flamelet combustion model is 
implemented, by introducing a heat loss to the flamelet 
library [5]. The radiation distribution incident to any 
surface of interest can then be calculated in an 
uncoupled fashion, once the fluid dynamic system of 
equations is converged, using a more sophisticated 
radiation model [ 51. For the areas of application men- 
tioned above ; the prediction of flashover, flame- 
spread and NO, production, radiation can have a 
large effect which requires accurate calculation of the 
radiative heat distribution and fluid flow in a coupled 
manner. 

A number of numerical techniques exist for solving 
the equation governing the transfer of thermal radi- 
ation, examples being Hottel’s zone method [6], 
Monte Carlo techniques [6] and flux models [7]. Each 
of the above methods have their advantages and dis- 
advantages, a detailed discussion of which can be 
found in 171. In this article the radiation model con- 
sidered is the discrete transfer method developed by 
Lockwood and Shah [7]. This algorithm has simi- 
larities to all three numerical techniques mentioned 
above, harnessing the advantages of each without 
many of the disadvantages. The method is numerically 
exact, geometrically flexible and easily coupled to a 
computational fluid dynamics solver. The discrete 
transfer method can also be implemented easily with 
most emissivity models such as the mixed grey gas 
model [8], the total transmittance non-homogeneous 
model [9], exponential wide band models [lo] and 
narrow band models [9]. One final consideration is 
that the discrete transfer method is ideal for 
implementing on parallel computer architectures. 
These attractive features have made the discrete trans- 
fer method a popular model with many groups inter- 
ested in heat transfer applications [5, 11, 121. 

The discrete transfer method of calculating radi- 
ative heat transfer involves the tracing of rep- 
resentative rays from one surface to another through 
the domain of interest. The intensity distribution 
along each ray is calculated by solving a discretisation 
of the equation of radiative heat transfer. Essentially 
the more rays traced, the more accurate the prediction 
of radiative heat distribution obtained. There are 
many situations where accurate prediction of radiative 
heat flux requires a large number of rays, particularly 
where the view factor from the high temperature emit- 
ting regions is small [5]. One further consideration is 
that tracing rays through the domain can be com- 
putationally expensive, especially for body fitted grids. 
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ray direction 
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a specific quadrature formula 
number of rays (Fig. 6) 
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direction 
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v31 
quantity associated with a wall 
numerically exact quantity. 

A@, Arj ray mesh spacing in the (3 and I#I Superscripts 
directions quantity incident to a wall. 

In the following sections the numerical accuracy 
and computational efficiency of the discrete transfer 
method is analysed. Suggestions are made for 
improvements to the algorithm and finally these 
improvements are evaluated by comparing predicted 
heat fluxes with analytic and numerically accurate 
solutions to test problems and measured fluxes from 
experiments. 

2. ASPECTS OF THE DISCRETE TRANSFER 

METHOD 

A detailed description of the discrete transfer 
method can be found in Lockwood and Shah [5]. We 
will only consider aspects of the algorithm of relevance 
to the issues addressed in the present article. 

In the discrete transfer method the domain of inter- 
est is overlaid with a computational mesh and rep- 
resentative rays are traced from one surface to 
another, through the intervening control volumes 
defined by the mesh. The transfer equation for thermal 
radiation along a ray, neglecting scattering can be 
expressed in the form, 

dZ KaaT4 
z= 

- K,Z+ ~ 
n . 

For any representative ray the intensity distribution 
can be calculated by assuming each control volume is 
homogeneous. Under this assumption equation (1) 
can be integrated to give the recurrence relation 

Z n+ I 
= !+%A~)+l,e-K.A~ (2) 

where Z, and I,,+, are the intensity of the ray on entry 
and exit, respectively and As is the distance travelled 
in the control volume. Therefore, given the initial 
intensity at a point on an emitting surface, the change 
in intensity along the ray can be calculated using equa- 
tion (2). The initial intensity is specified by taking the 
walls to be Lambert surfaces. 

For grey walls the emitted intensity is dependent on 
the incident flux qp 

q- = s I, (Cl) cos 0 dR (3) 
277 

where I; is the incident intensity. In the discrete trans- 
fer method the incident flux integral is replaced by a 
numerical quadrature 

qm = XI, (Cl) cos OACJ (4) 

The values of incident intensity I; at a point on a 
wall are calculated by tracing rays from the point 
and backtracking from the walls intercepted, applying 
equation (2) through each control volume. Hence for 
grey walled enclosures the coupling between the inci- 
dent flux and emitted intensity make the discrete trans- 
fer method a guess and correct procedure in which an 
estimate of the incident flux distribution is iteratively 
improved. 
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3. IMPROVEiMENTS TO THE DISCRETE 

TRANSFER METHOD 

The first aspect of the discrete transfer method con- 
sidered is the numerical integration of the incident 
intensity field to calculate the incident flux. 

3.1. Quadrature formulae 
In the descripti’on of the discrete transfer method 

given above the discretisation of the hemisphere of 
incident intensity was not considered. One possible 
discretisation is a uniform distribution of rays on the 
surface of the hemisphere. This discretisation is the 
one used by Guilbert [14] but it is not clear that this 
is the optimum diecretisation as Lambert’s cosine law 
increases the significance of incident intensity for small 
azimuthal angles. 

Rather than have a uniform distribution of rays on 
the hemispherical surface Shah [13] used a uniform 
distribution of ra:ys in the spherical co-ordinates (0, 
4), that define the unit hemisphere. For more than 
four rays a nonuniform distribution of rays on the 
hemisphere surface is produced, with a finer mesh 
for small azimuthal angles. A further advantage of 
working explicitly with local spherical co-ordinates is 
more accurate quadrature formulae can be derived. 
Shah [13] derived the following quadrature formula 
by assuming the intensity distribution is constant in 
each element of the unit hemisphere, defined by the 
discretisation in (II, 4) space 

q- = ? ; Z;(0j,~j)cos8,sinBisinA~A~. (5) 
j=lc=l 

For convenience this quadrature formula is labelled 

Q Shah. This is not the only quadrature rule that can be 
derived in this wa.y. Suppose the incident intensity is 
evaluated at the corners of each hemispherical 
element, and the incident intensity distribution has the 
form 

I= 
{ 

a+bO+& O<e<Ae 

a+bO+c~+d&$ Ae < e 

where a, b, c and G! are arbitrary, then the incident flux 
integral can be evaluated exactly. 

One disadvantalge of locating rays at the corners of 
hemispherical elements is that some rays are traced 
parallel to the surface. In practice this leads to poor 
results because of the co& dependence and makes it 
inappropriate to use the composite quadrature 
formula, for one- and two-dimensional geometries, 
where surfaces in the redundant co-ordinate directions 
can be specified a.s perfect reflectors. To remove this 
difficulty the intensity distribution in hemispherical 
elements adjacent to the surface are assumed constant 
rather than bilinear. This gives the composite quad- 
rature formula 

q- = I, (0,O) At& + z ; I, (et, c$~) AQi 
,= ,,= I 

AQ = 

AC#J cos 28, sin A6 
4 ( A0 

-cos (2e2 + A@) 

sin 280 

+ 268 
- -cos 2Ae 

> 
i= 1 

AI#J cos 2e,+, sin AB 
4 ( Ae 

-COS (2e,+,+Ae) 

cos 28, sin A8 
+cos(2e,-Ae)- Ae 

> 

i=2,3 ,...,N,-2 

A4 
T ~0~ (2e,_, - Ae) 

cos 2e,_ 1 sin At9 
_ 

88 > 

A$ cos eNo sin BNe sin At? 
c 

i= N,-1 

i = NO 

(6) 

< 

iAB 
ei = 

i=O,l,...,N,-1 

(i-0.5)Ae i = NB. 

This quadrature formula has the same formal accu- 
racy as equation (5) because of the constant intensity 
assumption for the hemispherical elements adjacent 
to the surface, but as A& A0 are reduced it should be 
accurate for intensity distributions well approximated 
by piece-wise linear profiles. This quadrature formula 
is analogous to a Newton Cotes formula for numerical 
integration on an interval [1.5]. For future reference 
this quadrature formula is denoted QNewt. 

It is possible to derive Gaussian type quadrature 
formulae [ 151, which are formally more accurate than 
Newton Cotes formulae for the same computational 
effort. However the only stable quadrature formula 
that can be derived can only be applied to hemi- 
spherical elements with corners located at (O,O), 
(7c/2,0), (7c/2,A4) and has the form 

where ZP, Zo, Z, are the incident intensity at the points 
P(aln/2,A4/2), Q(wG, (1 -8JW2) and R(w/Z 
(1 +fi,)A4/2), respectively. The values of the par- 
ameters XI,, w2, a,, cx2 and B, to six significant figures 
are given in Table 1. For future reference this quad- 
rature formula is labelled Qoauss. QGauss integrates 
intensity distributions that are quadratic in 4 and 
cubic in 0, exactly, however, it can only be used with 
relatively few rays as the hemispherical mesh can only 
be refined by reducing A$. QGauss should give accurate 
estimates of incident flux relative to the number of 
rays traced for large values of A& but as A4 is reduced 
will not necessarily converge to the correct value. 

In this section a number of quadrature formulae 
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Table 1. Parameters in the quadrature formula QCaurr 

WI M’2 al IX2 BI 

0.25 0.125 0.282382 0.717618 0.685412 

have been derived for calculating the incident flux at 
a point from the incident intensity distribution. The 
other aspect of the discrete transfer method where a 
numerical approximation is used is the calculation of 
the change in intensity along rays passing through the 
participating media. It is this topic that is discussed 
further in the next section. 

3.2. Integrating the thermal radiation equation 
Recall the recurrence relation (2) for the intensity 

distribution along a representative ray was derived by 
assuming the absorption coefficient and the tem- 
perature were constant in each control volume 
traversed. The recurrence relation (2) provides a sim- 
ple method for calculating the intensity leaving a con- 
trol volume in a prescribed direction from quantities 
readily available. However, a more accurate recur- 
rence relation can be derived by assuming the tem- 
perature varies linearly between the entry and exit 
points of a ray traversing a control volume. Inte- 
grating equation (1) using this assumption gives the 
recurrence relation, 

I n+l = 

K, = 0 

(7) 

AT= T,,, -T,, 

f[T; U] = T4-4T3U+12T2U2-224TU3+24U4 

where T,, and T,,, , are the temperature on entry and 
exit, respectively to the control volume. Using the 
recurrence relation (7) in the discrete transfer method 
coupled to a computational fluid dynamic solver 
introduces interpolation errors to the calculation of 
T, and T,, , , but the more accurate representation 
of the temperature field in the radiation calculation 
should give significant improvements in the accuracy 
of the intensity prediction, because of the nonlinear 
dependence of the intensity on the temperature. 

4. EVALUATION OF THE DISCRETE TRANSFER 
METHOD 

In this section the modifications to the discrete 
transfer method discussed above are evaluated by 
comparing predicted heat fluxes with analytic and 
numerically accurate solutions to test problems and 
measured fluxes. For each test problem the predictions 

using the suggested improvements to the algorithm 
are also compared with Shah’s [I 31 original algorithm. 
Shah’s original algorithm is defined to be the discrete 
transfer method incorporating the recurrence relation 
(2) and the quadrature formula QShah. 

4.1. Radiative heat transfer between parallel surfaces 
For the case of a constant absorption coefficient 

Heaslet and Warming [16] derived equations for the 
temperature field and net radiative flux, for finite 
values of emissivity and zero radiative source. For 
this test problem the conditions at the two respective 
surfaces are T,, = 1000 K, E,, = 0.9 and TW2 = 300 
K, E,* = 0.5. For this grey-walled scenario the con- 
vergence criteria and the initial incident flux dis- 
tribution used are respectively, 

wGd-9newl 
%Lv 

< 0.01 qm = 0. 

This problem is one-dimensional but is solved in 
a three-dimensional domain [0, L] x [0, L] x [0, L] by 
specifying the surfaces in the redundant co-ordinate 
directions as perfect reflectors. A uniform grid of six 
control volumes in each co-ordinate direction is speci- 
fied. 

Figure 1 shows comparisons of exact dimensionless 
heat flux with predicted values, using four rays per 
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Fig. 1. Comparison of predicted fluxes with analytic solution 
for 1D problem. Predictions calculated using (a) Shah’s orig- 

inal algorithm and (b) recurrence relation (7). 
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wall cell, for different values of optical thickness. Fig- 
ure l(a) shows .the predicted heat flux using Shah’s 
[13] original algorithm. The predicted heat flux is 
physically reasonable, with a monotone decrease in 
heat flux with increasing optical depth. However with 
increasing optical depth the error between the analytic 
and numerical solution increases. The trend in the 
error is due to the increased variation in the tem- 
perature field as the absorption coefficient is increased. 
Figure l(b) shows the predicted heat flux calculated 
using the quadrature formula Qshah and the recurrence 
relation (7). The predicted heat flux is improved com- 
pared to the prelious simulation, particularly for large 
values of optical thickness where the improved 
approximation of the temperature field is significant. 

Applying the discrete transfer method to this geo- 
metrically simple problem with the quadrature for- 
mula Qshah and the recurrence relations (2) and (7) 
has made it possible to evaluate these numerical 
approximations. In the next two sections more geo- 
metrically challenging problems are considered to 
evaluate the quadrature formulae QNewt and Qoauss. 

4.2. Radiative heat transfer in a duct 
In this test problem, radiative heat transfer in a 

square cross-sectioned duct of infinite length is con- 
sidered. The walls of the duct are cold and black. The 
interior of the duct is at a temperature T, = 1000 K 
with an absorption coefficient K, = 1. Under these 
conditions J. Gibb derived an analytic solution for the 
heat flux, which can be found in Shah [ 131. 

For this two-dimensional problem a uniform grid 
of 10 x 10 control volumes is prescribed. In Fig. 2 
predictions of dimensionless heat flux along one of 
the duct walls, normal to the length of the duct are 
compared with the analytic solution. Figure 2(a) is a 
comparison between the analytic solution and Shah’s 
original algorithm with 12 and 24 rays per wall cell, 
whereas Fig. 2(b) is a comparison between predictions 
of heat flux using QNewt with 13 and 25 rays per wall 
cell to evaluate equation (3) with the analytic solution. 
Note the increased accuracy of QN,, compared to 
Qshah with nominally the same computational cost. 

Predictions using the quadrature formula QGauss, 
(not shown) are similar to QNewt. The disappointing 
performance of Qcauss for this problem is likely to be 
due to its relative simplicity, in the next section a more 
realistic scenario is considered. 

4.3. Radiative heat transfer in a furnace 
The test problem considered is one used previously 

by Shah [ 131 to (demonstrate that the discrete transfer 
method is num8erically exact. Shah [13] considered 
the scenario presented below to be representative of 
radiative heat transfer in a typical furnace. The fur- 
nace is cylindrical in shape with a radius of 1 m and 
length 5 m. The walls are at a temperature of T, = 500 
K with an emissivity of E, = 0.8. Within the furnace 

a) 
o.,~ 

b) 

0.2 0.4 0.6 0.6 1.0 

x/L 
Fig. 2. Comparison of predicted fluxes with analytic solution 
for 2D duct. Predictions calculated using (a) Shah’s original 

algorithm and (b) QNeW, quadrature formula. 

the conditions are, 

T, = 1700K, K, = 0.6m-’ 

0 < r < 0.5 0 < z < 2.5 

T, = llOOK, K, = O.O5m-’ 

otherwise. 

A uniform mesh in each of the co-ordinate direc- 
tions (r, z) is specified to give 4 x 20 control volumes. 
As the walls of the furnace are grey, the convergence 
criteria and the initial estimate of the incident flux 
specified for the one-dimensional problem discussed 
earlie; are used. As one of the primary interests in 
this article is the rate of convergence of the heat flux 
distribution as the number of rays is increased, the 
predictions of heat flux distribution using relatively 
few rays are compared in Fig. 3 with a ray converged 
heat flux distribution using Shah’s [ 131 original algo- 
rithm. 

In Fig. 3(a) the predicted heat flux using Shah’s [ 131 
original algorithm with 12 and 24 rays is compared 
with the numerically accurate distribution. As can 
be seen both coarse ray predictions underpredict the 
numerically accurate prediction, although doubling 
the number of rays improves the agreement. Figure 
3(b) is similar to Fig. 3(a) with the coarse ray pre- 
dictions with 13 and 25 rays calculated using QNewt to 
evaluate the incident intensity integrals. Comparing 
the original algorithm’s predictions with those cal- 
culated with QNewt, there is a significant improvement 
in accuracy using QNewt. The final figure in the series, 
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Fig. 3. Comparison of predicted fluxes with numerically 
accurate solution for furnace. Predictions calculated using 
(a) Shah’s original algorithm, (b) QN,,, quadrature formula 

and (c) QCausr quadrature formula. 

Fig. 3(c), is a comparison of the predicted heat flux 
distribution using QGauss with 12 rays with the numeri- 
cally accurate distribution. Of the predictions ?f heat 
flux using 12 and 13 rays, QGauss is the superior. How- 
ever as the number of rays is increased QGauss does not 
converge to the correct heat flux distribution. This 
nonconvergence property as discussed previously 
makes this quadrature formula of academic interest 
only and will not be discussed further. 

Although Shah [13] considered this scenario to be 
representative of radiative heat transfer in furnace 
applications, the step changes in the temperature field 
are physically unrealistic. In the final test problem 
considered below, a more realistic temperature field is 
prescribed making it possible to compare Shahs [ 131 
original algorithm with a version of the discrete trans- 
fer method with QNewt and the recurrence relation (7) 
implemented. 

4.4. External radiationjeldfrom a flare 
The calculation of the external radiation field from 

a wind blown natural gas flare is a challenging prob- 

lem. The flare issues from a stack 12 m above ground 
level with a diameter of 0.6 m, and a mass flow rate 
of 77 kg ss’ into a cross-wind of 4 m ss’ at 10 m above 
ground level. In the radiation calculations discussed 
below the flame structure is calculated from an inte- 
gral model described in detail in Cook [ 171 and [ 181 
and extensively validated in Cook [17, 181 and Caul- 
field et a/. [19]. Briefly the integral model is a system 
of ordinary differential equations derived from the 
Reynolds equations [3] by imposing self similarity in 
the stream-wise direction, and prescribing empirical 
entrainment relations. The turbulence closure used is 
a one-dimensional k-E model. The combustion pro- 
cess is modelled using a conserved scalar/prescribed 
probability density function approach using the lami- 
nar flamelet concept, extended to account for soot 
formation and consumption. 

The flame structure is calculated in a curvilinear 
co-ordinate system (s,r), where s is the curvilinear 
distance along the trajectory of the flare and r is nor- 
mal to s. To use this characterisation of the flame 
structure in the radiation calculations the tempera- 
ture, soot and chemical composition predictions are 
interpolated on to a Cartesian grid, and a mixed grey 
gas model [8] applied to prescribe the absorption 
coefficient field. The origin of the Cartesian domain is 
taken to be the centre of the stack exit. Labelling 
the downwind direction x. cross-wind direction y and 
vertical direction z, there is a plane of symmetry at 
y = 0. The domain for the radiation calculations is 
taken to be (- 20,40) x (0,40) x (0, I30), with domain 
boundaries taken to be symmetry boundaries or black 
surfaces at ambient temperature as appropriate. The 
computational mesh expands geometrically away 
from the origin with a total number ofcontrol volumes 
of32x24x80. 

Figure 4 is a contour map of the temperature field 
on the plane of symmetry, showing the flame shape. 
In Fig. 5 two predictions of the external radiation 
field are compared with the measured heat flux at six 
locations. The radiative heat flux meters are arranged 
in a line at an angle of 20” to the wind direction, 1.5 
m above ground level. The receivers are oriented in 
an attempt to capture the maximum radiative flux 
obtainable at a given point in space, by pointing their 
normals at the approximate flame centre. The accurate 
prediction of the flame structure is a nontrivial exer- 
cise. Using an integral model to specify the flame 
structure and a mixed grey gas model for the absorp- 
tion coefficient introduces sources of error associated 
with the modelling assumptions in each of the sub- 
models. These physical modelhng errors and the 
experimental uncertainty present in any field scale 
experiment clouds the assessment of the suggested 
modifications to the original discrete transfer method. 
With this limitation in mind, the predicted heat flux 
distribution using QNewt and the recurrence relation 
(7) is in closer agreement with the measured data than 
Shah’s original algorithm. 

Although the different contributions to the error 
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Fig. 4. Temperature field for the flare, JJ = 0. Contour values 

of 900, 1100, 1300 and 1500 K. 

makes a detailed comparison between the two recur- 
rence relations 1.2) and (7) difficult, an assessment of 
the rate of convergence of the two quadrature for- 

mulae Qshah ad QFM as the number of rays is 
increased can be made. Figure 6 shows the relative 
difference between the predicted heat flux at x’ = 30 
m and the ray converged value as a function of the 
number of rays. for the two quadrature formulae. 
Each line is generated by calculating the relative 
difference for four ray distributions and fitting a 
smooth interpolating polynomial. Each successively 
finer ray distribution is specified by halving A$ and 
A@. As can be seen in the figure the QNewt curve is 
within 4% of the ray converged value when 193 or 

Fig. 5. Comparison of predicted fluxes with measured values 
for the flare. (a) Shah’s original algorithm with 192 rays and 

(b) QN.,, and recurrence relation (7) with 193 rays. 

lu. of rays(i) 

Fig. 6. Rate of convergence for predicted heat flux at x’ = 30 m 
for the quadrature formulae Qsh.,, and QNewt. 

more rays are used, whereas Qshah requires 768 rays to 
achieve the same level of convergence. 

5. COMPUTATIONAL EFFICIENCY OF THE 
DISCRETE TRANSFER METHOD 

A final aspect of the discrete transfer method that 
warrants further investigation is the computational 
efficiency of the algorithm, when it is applied iter- 
atively ; that is when the walls are grey, the radiative 
source distribution is specified or the radiation model 
is coupled to a computational fluid dynamic solver. 
Returning to the 1D scenario (two infinite parallel 
surfaces) four iterations are required to satisfy the 
convergence criteria. Computer profiling the discrete 
transfer method algorithm on a Silicon Graphics Iris 
4D/35 workstation to identify the computer intensive 
parts of the algorithm, it was found that nearly 70% 
of execution time was accumulated tracing rays 
through the domain. Note that once the hemispherical 
mesh is specified the direction of all rays is fixed. 
Hence it is possible to calculate the control volumes 
traversed, the distance travelled in each control vol- 
ume and the walls impinged for each ray during the 
first iteration and store the information. For sub- 
sequent iterations the stored geometric information 
can be used rather than recalculated. 

Implementing the discrete transfer method in this 
way for the ID problem gives a speed-up coefficient 
of S, = 2.1, where S, = t,,,/tsto, t,,, is the execution 
time for the algorithm with the ray trace calculated 
every iteration, and t,,, is the execution time for the 
algorithm when the ray trace is calculated once and 
stored. This, however, is not a good measure of 
improved performance as it is specific to this problem. 
A better measure is the speed-up coefficient for one 
iteration of the algorithm, which is S, = 3.5. This is a 
good measure of improved performance as the once 
and for all calculation of the ray trace is a small 
overhead when many iterations of the discrete transfer 
method are performed, which is the case when used 
in conjunction with a computational fluid dynamic 
solver. 

Application of the algorithm to a wide variety of 
problems on a number of computer systems indicates 
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the speed-up coefficient is insensitive to the number 
of rays and control volumes used but is sensitive to 
geometric complexity and the computer hardware 
employed. For rectangular enclosures and a variety 
of computer systems the speed-up coefficient for one 
iteration varied from 3.5 to 6.1. 

The disadvantage of calculating the ray trace once 
and storing the information is that even for a modest 
number of rays and a coarse finite-difference grid this 
requires a large memory capacity. When Lockwood 
and Shah [7] formulated the discrete transfer method 
in its original implementation, one of its advantages 
over other models was its modest memory require- 
ments as computer memory was expensive. Over the 
last decade computer technology has advanced such 
that memory now is an inexpensive component of a 
computer system making the ‘once and for all’ ray 
trace implementation feasible. 

6. CONCLUSIONS 

In this article the discrete transfer method of Lock- 
wood and Shah [7] for calculating radiative heat trans- 
fer has been examined. Various aspects of the algo- 
rithm have been analysed and modifications suggested 
to improve the accuracy and computational per- 
formance. In particular, a number of quadrature for- 
mulae have been derived for calculating the incident 
flux distribution, and a more accurate representation 
of the temperature field has been harnessed in the 
calculation of intensity throughout the domain. 

These modifications have been evaluated by com- 
paring predicted heat fluxes with analytic and numeri- 
cally accurate solutions to test problems as well as 
measured fluxes for a wind blown flare. The evaluation 
study shows that the modifications yield significant 
improvements over the numerical approximations for- 
mulated by Lockwood and Shah [7]. 

Acknowledgements-The author wishes to thank Geoff Cox 
and Suresh Kumar for stimulating his interest in radiative 
heat transfer. This paper is published by permission of British 
Gas Pk. 

4. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

1. F. C. Lockwood and W. M. G. Malalesekera, Fire com- 
putation : the ‘flashover’ phenomenon, Proceedings of 
the Twenty second International Symposium on Combus- 
tion, pp. 1319-1327. The Combustion Institute (1988). 

19. 

K. Kuo, Principles of Combustion, Chap. 7. Wiley, New 
York (1986). 
W. P. Jones and J. H. Whitelaw, Calculation methods 
for reacting turbulent flows: a review, Combust. Flame 
48, l-26 (1982). 
S. Kumar, A. K. Gupta and G. Cox. Effects of thermal 
radiation on the fluid dynamics of compartment fires, 
Proceedings of the Third International Symposium on Fire 
Safety Science, pp. 345-354. Hemisphere. New York 
(1991). 
M. Fairweather, W. P. Jones and R. P. Lindstedt, Pre- 
dictions of radiative transfer from a turbulent reacting 
jet in a cross-wind, Combust. Flame 89,45-63 (1992). - 
R. Siegel and J. R. Howell, Thermal Radiation and Heat 
Transsr. McGraw-Hill, New York (1972). 
F. C. Lockwood and N. G. Shah, A new radiation solu- 
tion method for incorporation in general combustion 
prediction procedures, Proceedings of the Eighteenth 
International Symposium on Combustion, pp. 1405-1413. 
The Combustion Institute (1981). 
J. S. Truelove, Mixed grey gas model for flame radiation, 
AERE R 8494, UKAEA, Harwell, U.K. (1976). 
W. L. Grosshandler, Radiation from non-homogeneous 
gases : a simplified approach, Int. .I. Heat Mass Transfer 
23, 1447-1459 (1980). 
P. Docherty and M. Fairweather, Predictions of radi- 
ative transfer from non-homogeneous combustion prod- 
ucts using the discrete transfer method, Combust. Flame 
71, 79987 (1988). 
A. D. Gosman, F. C. Lockwood, I. E. Megahed and 
N. G. Shah, The prediction of the flow reaction and heat 
transfer in the combustion chamber of a glass furnace. 
Proceedmqs of the Eiqhteenth Aerospace Science Meet- 
ing, paper SO-f)01 6, Pasadena (1980): 
P. S. Cumber, S. Kumar and D. Smith, Evaluation of 
the discrete transfer method and its application to fire 
modelling, Eurotherm seminar No. 13 : Fire modelling, 
UKAEA, Harwell June (1990). 
N. G. Shah, New method of computation of radiant 
heat transfer in combustion chambers, Ph.D. Thesis, 
University of London (1979). 
P. W. Guilbert, Comparison of Monte Carlo and discrete 
transfer method for modelling thermal radiation, 
AERE-R 13423, UKAEA, Harwell, U.K. (1989). 
C. F. Gerald and P. 0. Wheatley, Applied Numerical 
Analysis (3rd Edn), Chap. 4. Addison-Wesley, London 
(1984). 
M. A. Heaslet and R. F. Warming, Radiative transport 
and wall temperature slip in an absorbing planar 
medium, ht. J. Heat Mass Transfer 8,979-994 (1965). 
D. K. Cook, A one-dimensional integral model of tur- 
bulent jet diffusion, Cornbust. Flame 85, 143-154 (1991). 
D. K. Cook, An integral model of turbulent non-pre- 
mixed jet flames in a cross-flow, Proceedings of the 
Twenty Third International Symposium on Combustion, 
pp. 653-660. The Combustion Institute (1990). 
M. Caulfield, D. K. Cook, P. Docherty and M. Fairwea- 
ther, An integral model of turbulent jets in a cross-flow 
Part 2-H. Fires, Tram IChemE. Part B 71, 2433251 
(1993). 


